Event Details

Tuesday, 05 September 2017
12:00 pm - 1:00 pm
Large Seminar Room (3.142), Level 3 Qld Bioscience Precinct Building 80, St Lucia
Event category(s):

Event Contact

Miss Hannah Hardy
Org. Unit:
Queensland Alliance for Agriculture and Food Innovation

Event Description

Full Description:
Mosquitoes transmit the world's deadliest diseases such as malaria, dengue, Yellow fever, Chikungunya and Zika. More than half of the world’s population is at risk of contracting these diseases. Each year, over 300 million cases of malaria are reported. Dengue cases have risen 30 times in the last 3 decades and Zika is an emerging infectious disease that was declared a public health emergency of international concern in 2016.
Except for yellow fever, there are no effective vaccines for all these debilitating infections therefore control of mosquitoes is the only means of managing them. To evaluate success and failure points of current and novel mosquito control programs, decision-makers need timely, high throughput and cost-effective surveillance tools. This information is required to identify high risk areas in a timely fashion allowing for the prioritization of resources to communities most in need thus maximizing the efficiency of vector control interventions. Our study involves analysis of current and novel vector control intervention’s capability to reduce the burden of these disease in Africa and South America. We do this by applying the near infrared spectroscopy (NIRS) technique to characterise mosquito populations’ abundance, infection capability and their survival rates. NIRS is a high throughput technique that requires little sample processing, zero reagents and minimal skills. Hundreds of samples can be analysed in a day allowing timely decision making by policy makers.

Event Tools

Share This Event

Print this Article Print

Print this Article Email

Share this Article Share

Rate This Event

Tweet This Event

Export This Event

Export calendar

Calendar Tools

Filter by Keywords/Dates

Featured Calendars

Subscribe via RSS