Event Details

Date:
Friday, 30 November 2018 - Friday, 30 November 2018
Time:
11:00 am - 12:00 pm
Room:
QBI Level 7 Auditorium
UQ Location:
Queensland Brain Institute (St Lucia)
URL:
http://www.qbi.uq.edu.au/neuroscience-seminars
Event category(s):

Event Contact

Name:
Ms Deirdre Wilson
Phone:
66300
Email:
d.wilson5@uq.edu.au
Org. Unit:
Queensland Brain Institute

Event Description

Full Description:
Professor Valentin Nägerl
Institute for inter-disciplinary Neuroscience, University of Bordeaux
Title: 'Super-resolution microscopy for neuroscience: new methods & applications'

Abstract:
The advent of super-resolution microscopy has created unprecedented opportunities to study the mammalian central nervous system, which is dominated by anatomical structures whose nanoscale dimensions critically influence their biophysical properties. I will present our recent methodological advances 1) to analyze dendritic spines in the hippocampus in vivo; 2) to visualize the extracellular space of the brain and 3) to reveal the morphological structure and molecular arrangement of adhesive structures and synapses in live cells at the nanoscale level.

We established chronic in vivo super-resolution imaging of dendritic spines in the hippocampus, based on an upright 2P-STED microscope equipped with a long working distance objective and ‘hippocampal window’ to reach this deeply embedded structure. We measured spine density on pyramidal neurons in the CA1 area and determined spine turnover by repetitive imaging. Spine density was two times higher than reported by conventional 2P microscopy, and around 40% of all spines turned over within 4 days, indicating a high level of structural remodelling.

We combined 3D-STED microscopy and fluorescent labeling of the extracellular fluid to develop super-resolution shadow imaging (SUSHI) of brain ECS in living brain slices. SUSHI enables quantitative analysis of ECS structure and produces sharp negative images of all cellular structures, providing an unbiased view of unlabeled brain cells with respect to their complete anatomical context in a live tissue setting.

Current super-resolution microscopes are proficient at collecting either single molecule or morphological information, but not both. I will present a new super-resolution platform that permits correlative single molecule imaging and STED microscopy in living cells. We demonstrate that this multi-modal approach can give access to both kinds of information by revealing on a nanometer spatial scale protein localization and dynamics and cellular morphology.

Directions to UQ

Google Map:
Directions:
St Lucia Campus | Gatton campus.

Event Tools

Share This Event

Print this Article Print

Print this Article Email

Share this Article Share

Rate This Event


Tweet This Event

Export This Event

Export calendar

Calendar Tools

Filter by Keywords/Dates

Featured Calendars


Subscribe via RSS